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SUMMARY 

The problem under investigation is that of fluid flow within an enclosed rectangular cavity. It is assumed that 
one wall is maintained at a constant temperature I", (hot wall) and the other wall is maintained at a constant 
temperature To (cold wall). At the remaining walls, two separate cases are studied. In the first, an adiabatic 
boundary condition is assumed. That is, the normal derivative of the temperature function is assumed to be 0. 
In the second, it is assumed the temperature varies linearly from To to Tl. 

The purpose of this paper is the application of a second order numerical technique to the problem of fluid 
flow within a heated closed cavity. The method is a modification of a method developed by Shay and applied 
to the driven cavity problem. In order to test the viability of this technique, it was decided to extend the 
technique to the problem of natural convection in a square. Jones' proposed that this problem is suitable for 
testing techniques that may be applied to a wide range of practical problems such as reactor insulation, 
cooling of radioactive waste containers, solar energy collection and  other^.^ 

The technique makes use of second-order finite difference approximations to all derivatives in the 
governing equations. Furthermore, second-order approximations are also used to determine boundary 
vorticities and, when the adiabatic boundary condition is used, for the boundary temperatures as well. In 
some works, where second-order approximations are used at interior points, second-order boundary 
approximations have been sacrificed in favour of a more stable, but first-order boundary approximation. 

The current approximations are generated by writing the unknown value of a function at a given interior 
node as a linear combination of unknown function values at all of the neighbouring nodes. Then the function 
values at these neighbouring nodes are expanded in a Taylor series about the given node. Through 
appropriate regrouping of terms and the use of the equations to the solved, constraints are imposed on the 
coefficients of the linear combination to yield a second-order approximation. As it turns out, there are more 
unknowns than constraints and, as a result, we are left with some freedom in choosing coefficients. In this 
work this freedom was used to choose coefficients in such a way as to maximize stability ofthe resulting system 
of equations. In other words, the approximations to the governing partial differential equation are 
individually determined at each point dependent on the direction of flow in order to generate the best possible 
stability. This idea is analogous to that used in the derivation of the upwind method. However, the current 
method is second-order accurate where the upwind method is only first-order accurate. Thus, what is 
generated is an easily implemented second-order method that yields a system of equations that has proved 
easy to solve. 

The system of equations is solved via the method of successive overrelaxation. The stability of the method is 
shown in the convergence for a wide range of Rayleigh numbers, Prandtl numbers and mesh sizes. Level 
curves of the stream, vorticity and temperature functions are provided for Rayleigh numbers (Ra) as large as 
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100,000, Prandtl numbers (Pr)  as small as 0.0001, and mesh sizes as small as 0.0125. Values of the Nusselt 
number have also been calculated through the use of Simpson’s rule, and a second order approximation to the 
normal derivative of the temperature along the cold wall. Comparisons are made with other current works to 
aid in the verification of this methods’ accuracy and also with the first-order upwind method to demonstrate 
superiority over the first-order method. 

INTRODUCTION 

Numerical results for this problem have been previously obtained by others. However, most of the 
results were obtained for limited values of Ra or Pr, or with first-order numerical approximations. 
For example, Pooh4 used a numerical method based on the use of orthogonal polynomials. 
Rosen’ employed linear programming techniques, and Newel1 and Schmidt6 used central 
difference approximations to first derivative terms. All used a value of Pr = 0.73. In addition, Poots 
and Rosen could not obtain convergence for Ra > 10,000. Others7-13 have also used central 
difference approximations. However, central differences tend to be unstable for small values of Pr. 
For example, Rube1 and Landislo and Shembharker and Gururajal used values of Pr > 1. de Vahl 
Davis’ and Wilkes and Churchill13 were successful with Pr 2 0.1. Elder’ was able to obtain 
convergence with Pr = 001, but at  the expense of severely limited values of Ra (at Pr = 0.01 stable 
solutions were obtained only for Ra < 60). 

Part of the problem with central differences is that the resulting coefficient matrix contains off- 
diagonal values that are large relative to the diagonal values. Thus, iterating to a solution becomes 
difficult.’ 

One way to avoid relatively large off-diagonal elements is to use the upwind method developed 
by Green~pan.’~ Schultz16 and MacGregor and Emery17 applied the upwind method to the 
current problem. The resulting coefficient matrices were diagonally dominant for all values of Ra 
and Pr. Convergence was reported for values of Ra as large as 100,000 and values of Pr as small as 
000001. The drawback of this method is its first-order accuracy. Consequently, very small mesh 
sizes are needed to guarantee accuracy. 

More recently, de Vahl Davis and Jones3 have published a comparison exercise which 
summarizes contributions from 36 sources along with results from a method they describe in this 
reference. Some of these contributions produced results for large Rayleigh numbers, some used 
coarse grids, and some used first-order boundary approximations. In short, although many results 
for large Rayleigh numbers have been described, there is no evidence that any one of these methods 
have produced results for large Rayleigh numbers and small Prandtl numbers with small grids and 
second order boundary approximations. The current method has produced such results. 

THE PROBLEM 

The problem is described in Reference 16. The equations to be satisfied in the interior of the region 
(Figure 1) are as follows: 

V”= -i 
V2 T i -  t,hXTy - +yTx = 0 

and 
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C:(l,l) 

B:(1,0) 
x i  

Figure 1 .  

The stream, vorticity and normalized temperature functions are represented by $, ( and T, 

Boundary conditions for the problem are 
respectively. The Rayleigh and Prandtl numbers are given by R a  and Pr,  respectively. 

$ = O  on ABCDA 
a $ p y  = 0, T= o on AB 
a$iax = 0, aTiax = o on AD and BC 
d $ / d y =  0, T = 1 on CD 

These are boundary conditions for the case where the surfaces between the hot and cold walls are 
insulated. In the case where the temperature varies linearly along the walls separating the hot and 
cold surfaces, the condition aT/dx = 0 is replaced by T = y in equation (5b). This case is considered 
later. 

DIFFERENCE EQUATIONS 

To start the method, a rectangular array of nodes is placed over the region in Figure 1 .  It is 
assumed the vertical and horizontal spacings are equal and are described by h. Define the inner 
boundary as the collection of all points that lie a distance of h from the boundary. Values at these 
grid points are used to guarantee that the normal derivative conditions of the stream function are 
satisfied. 

Boundary vorticities may be approximated by (Figure 2).18 

( 0  = - 3$,/h2 - <,/2 + Q(h2).  

A similar derivation shows that boundary temperature may 

To = 4T,/3 - T2/3 

(6) 

(7) 

be approximated by 

h n h h 

Figure 2. 



4 3 0  WILLIAM A. SHAY AND DAVID H. SCHULTZ 

Stream values on the inner boundary are determined by first writing." 

$no =( - 11$o + 18$1- 9$2 + 2$3)/6h + O(h3) (8) 
Here, 
and 1,4~ = 0, I/J~ is expressed as 

represents the derivative of $ in the direction normal to the wall at the wall. Since I),,, = 0 

* 1 =  *2/2  - *3/9 + O(h4) (9) 
The higher order approximation (8) is used so that when (9)  is used in (6)  the O(h2) accuracy of (6)  is 
maintained. 

At any interior node (Figure 3) V2$ may be approximated by 

vz$ = ( - W0 + *1 + dl/z + $3 + $4)/h2 + (10) 

v2c = ( - 410 c z  c 3  c4)/h2 O(h2) (11)  

V2T=( - 4To + 7'1 + 7'2 + 7'3 + T4)/h2 + O(h2)  (12) 

Similarly we have 

and 

In (3), Ty is approximated by 

T,, = (Tz - T4)/2h + O(h2) 

To approximate (l/Pr)$&, - (l /Pr)$, ,cx in (3), write 
X 

where the cli are to be determined. Expand each ti in a Taylor series about the point Po. 
Next, reorganize terms of the expansion and group together the coefficients of lo, ex,, eyo, etc., up 

to third partial derivatives. Then equate with coefficients of like terms in (14). Therefore in order for 
x7=oai[i  to approximate ( l / P r ) $ ~ ~ &  - ( l /Pr)$, , (x  it is sufficient that the a, satisfy 

8 

i = O  
c ai=O 

T2 5.1 

Figure 3. 
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However, it is generally not possible to satisfy ( 2 1 )  and (24) if (16) and (1 7) are satisfied. As a result, 
(21) and (24) will constitute an error term of the form 

( - $y/prk)ixxx(h3/6) IPo + ( ~ x / P r ~ ) i y y y ( ~ 3 / ~ ) 1 P o  = (h2/6Pr)($xiyyy - $yixxx) I P" 

In addition, (22) and (23) are dropped since this yields more flexibility in determining the cli and 
does not introduce any lower order error terms. In fact, the six remaining equations in nine 
unknowns result in three degrees of freedom with which to chose the cli. If ff6, and a8 are the 
independent choices then 
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In all cases 

and 

a, = clz = a3 = a'$ = - a,/2 

E = (h2 /6W($ , lyYy  + 3$,lxXy - 3$JxYy - $JxAI~o 

(38) 

(39) 
- 1)~)/2h and (t,hz - 4b4)/2h, respectively, in each of the 

The lowest order error term is 

If $ , I p o  and $ y l p o  are approximated by 
cli, the complete approximation of ( 3 )  is 

4 8 

( - 4 + Qo)Yo + 1 ( 1  + Qi)ii + 1 aili + R U ( T ~  - ~ , )h /2  = o 
i =  1 i = 5  

where 

and 

Qi = h2ai for i = 5,6,7,8 (43) 
This method of approximation is similar to the upwind method in that coefficients are chosen 
based on the signs of $, and $ y .  As a result, contributions to diagonal elements of the coefficient 
matrix from the term ( l / P r ) ( $ x [ y  - $JX) are guaranteed to be negative, thus adding to the 
magnitude of the - 4 generated in the approximation of Vz[. In fact, it is not difficult to show that, 
in each case 1 ?= , I ail / /  a, I = 3 for any value of Pr. 

To complete the description of the method, $,T, - $yTx from (2) must be approximated. To do 
this, simply replace (1/Pr) with 1 and [ with T and repeat the previous development. 

Given the complete discretization of(1)-(3), the method is started by assigning initial values of $, 
[and T to each node. Initial values may consist of all Os, results of another method, or results from 
the current method run with different values of h, (l/Pr) or Ra. Then successive sweeps of the region 
are made, redefining the stream, vorticity, and temperature functions at each node through the txe 
of the successive overrelaxation (S.O.R.) technique until all three functions have converged. The 
order in which nodes are covered within a sweep may affect stability. In an application of a similar 
method to another p r ~ b l e m ' ~  divergence resulted when, with each sweep, the nodes were covered 
from left to right along each row, starting at the bottom row and proceeding to the top row. 
However, if in alternate sweeps the pattern was reversed, convergence resulted. 

RESULTS AND CONCLUSIONS 

Coverged solutions have been obtained for Rayleigh numbers up to 100,000 and Prandtl numbers 
as small as 0.0001. Results have been obtained for a decreasing sequence of mesh sizes, and from the 
use of extrapolation on results of the two smallest mesh sizes (h = 0.025 and h = 0.0125). The 
extrapolated results are compared with results considered to be the best known generated by de 
Vahl Davis3 (Table 1). As in Reference 3, the average Nusselt number was calculated through the 
use of a three point approximation to aT/ay  at the cold wall and Simpson's rule to approximate 
f ;(dT/ay)l,=, dx. Fourth order approximations were used to calculate the maximum vertical 
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velocity on the horizontal midplane (urnax), maximum horizontal velocity on the vertical midplane 
(urnax), and the maximum and minimum local Nusselt numbers (Nu,,, and Numi,). Within Table I, 
x or y indicates a co-ordinate of a point where the value immediately above was located. The 
maximum stream value is given by $,,, and represents the stream value at the midpoint. 
There is excellent agreement between the results, with relative differences generally less than 1 per 
cent (see Table I). 

Figures 4-6 contain level curves for the stream, vorticity and temperature functions. 

Table I. Comparison of results from the current method and Reference 3. Pr = 0.71. 

Ra = 10,000 RU = 100,000 
Reference 3 Current study Reference 3 Current study 

~~ ~ ~ __ 
Nu 2.238 2.257 4.505 4.505 
Numa, 3.527 3.562 7.117 7.793 
X 0.143 0.125 0.082 0.075 
Numm 0586 0.574 0-729 0-723 
X 1.0 1 .o 1 .o 1'0 
omax - 16'178 - 16.153 - 34.17 - 34.71 
X 0.823 0825 0.854 085 
Umax 19.643 19.608 68.25 68.49 
Y 0.1 19 0.125 0.066 0.059 
*rnd 5.079 5.070 9.120 9.089 
$ma, n.a. 5.070 9.622 9.591 
X n.a. 0.5 0.399 0.4 
Y n.a. 0.5 0.713 0.709 

Figure 4. Streamlines for Rayleigh number 1OO,OOO, Prandtl number 071 and mesh size 0.0125 
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Figure 5. Vorticities for Rayleigh number 100,OOO, Prandtl number 0.71 and mesh size 00125 

Figure 6. Temperature for Rayleigh number 100,000, Prandtl number 0.71 and mesh size 0,0125 

It is noteworthy to mention that despite the second-order accuracy of this method, it is shown 
that a very fine mesh size is quite necessary in order to achieve excellent accuracy when large 
Rayleigh numbers are used. This is demonstrated in Table 11 where results are displayed as 
functions of h. 

As previously stated, the method has also proved stable for small values of the Prandtl number. 
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Table 11. Results for Ra = 100,000, Pr = 0.71 as functions of h. Extrapolated 
results are obtained from results with h = 0025 and h = 0.0125 

h = 0.05 h = 0.025 h = 0.0125 extrapolated 

4.943 
7.744 
0.1 
0.597 
1.0 

33.67 - 
0.85 

67.27 
0.1 
9.3 1 
9.83 
0.4 
0.7 

4.658 
7.877 
0.075 
0672 
1 .o 

34.40 - 
0.85 

69.28 
0.07 5 
9.24 
9.74 
0 4  
0.725 

4.543 
7.814 
0.075 
0710 
1 .o 

34.63 - 
085 

68.69 
0.063 
9.127 
9.628 
0.4 
0'713 

4505 
7.793 
0.075 
0.723 
1 .o 

34.71 

68.49 
0.85 

0.059 
9.089 
9.591 
0.4 
0.709 

\ 

Figure 7. Streamlines for Rayleigh number 100, Prandtl number 0.0001 and mesh size 0.0125 



436 WILLIAM A. SHAY AND DAVID H. SCHULTZ 

Table 111. Results for Ra = 100, Pr = 
O~OOO1 and h=00125 

Figure 8. Vorticities for Rayleigh number 100, Prandtl number 0GO01 and mesh size 0.0125 

Table IV. Comparison of results from the current method 
and the first-order method in Reference 16. Ra = 10,000 and 

Pr = 0.73 

First-order method Current method 
h +mid [mid $mid (mid 

0.1 7.962 168.0 6.764 139.4 
0.05 7.066 142.0 6430 130.7 
0.025 6.590 1350 6.357 129.4 
0.0125 6.423 132.3 __ - 
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ff.6 

0.6 

0.4 1 

1 0.2 

1 
Figure 9. Temperatures for Rayleigh number 100, P~andtl  number 04XX31 and mesh size 0.0125 

Table 111 contains a summary of results obtained for Pr = 0.0001 and Ra = 100. Figures 7-9 
contain level curves for the stream, vorticity and temperature. A mesh size of 00125 was used. 

In addition to the displayed results from Reference 3, a collection of results from 36 outside 
sources is also summarized in Reference 3. However, none of these results were obtained with as 
fine a grid for Ra = 100,000 as were the current results. One source did use a similar size mesh for 
Ra = 1,000,000 but had difficulties preserving the symmetry of the problem. Also, none of the 
methods indicate success with small Prandtl numbers. It is the success of the current method with 
the wide range of both Rayleigh and Prandtl numbers (due primarily to the 3 degrees of freedom in 
choosing coefficients of approximating equations) at small mesh sizes that indicate the potential of 
this method as an accurate technique applicable to a wide variety of problems. Other features of the 
current method include the second-order accuracy of all approximating equations (including 
boundary approximations-some authors used first-order boundary approximations~, the use of 
grid refinement and extrapolation on an already fine mesh size, easy implementation on a 
computer, and flexibility for adaption to other types of problems. None of the methods in 
Reference 3 indicate possession of all of the above features. 

The method was also tested for the case of linear temperature variation between the hot and cold 
walls. This was done primarily to compare with existing results generated by the first-order upwind 
method. Table IV contains a comparison between results of the current method and results from 
Reference 16. 
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The superiority of the second-order method is shown here. For example, results comparable to 
those obtained by the first order method with a mesh size of 0.0125 are comparable to results 
obtained by the second order method with a mesh size of only 005. In fact, these second-order 
results are probably better. 
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